
NewWave Workflow Engine
Sebastijan Kaplar

 Faculty of Technical Sciences
 University of Novi Sad

Novi Sad, Serbia
 kaplar@uns.ac.rs

Miroslav Zarić
 Faculty of Technical Sciences

 University of Novi Sad
Novi Sad, Serbia

 miroslavzaric@uns.ac.rs

Gordana Milosavljević
 Faculty of Technical Sciences

 University of Novi Sad
Novi Sad, Serbia
 grist@uns.ac.rs

ABSTRACT
NewWave1 is an open-source workflow engine written in

Pharo. The driving idea behind the work presented in this paper is
to create an extensible workflow management system, natively
written in Pharo, to facilitate easy specification and
implementation of application business logic. Workflows can then
be executed in a controlled manner, with the ability to gather and
process business data using highly customizable plugins.
Although still in the development stage, NewWave engine already
supports basic control-flow patterns such as sequence, parallel
split and join with synchronization, exclusive split and join,
several event types, etc. This makes the NewWave engine
applicable for specific real-life workflow models.

KEYWORDS
Workflow, Workflow engine, Pharo, TaskIt

1 Introduction

Process-aware business systems have gained, in the last
decade, strong support throughout the landscape of business
information systems. Most of these systems are relying on a
possibility to decompose business functions as a sequence of
actions that, when executed in a controlled order, are driving the
business toward a successful outcome. Most of the business
functions may be represented as workflow - an orchestrated and
ordered execution of activities. Reduced to its core elements,
workflow technology serves to control and coordinate, in a
flexible way, the execution of sets of well-defined operations [1].
Work scenarios are specified, executed, and controlled with the
workflow system. This technology has found use in many
different domains, including business processes, scientific
applications, and e-learning. One of the main reasons for this
expansion is that workflows employ concepts from the specific
domains, which is why workflows are commonly used by domain
experts without extensive technical background [1]. Although
identification of discrete actions and their proper ordering is
usually the most important and the most obvious part of the
workflow model, for successful execution, workflow model (and
execution engine) must also have the capability to express process
data and task assignment model in order to be truly functional.

1https://github.com/skaplar/NewWave

Pharo, a purely object-oriented language, has much potential
to implement and support many business-oriented applications.
Pharo is providing simple, yet powerful syntax, and is focused on
simplicity and immediate feedback, promising developers almost
instantaneous results. Pharo is also dynamically typed, and many
Pharo related projects are aimed at supporting model-driven and
dynamic approach throughout all phases of software development:
specification, design, and implementation. However, there is a
lack of widely adopted native support for workflow modeling and
implementation. This fact impairs the ability to have a process-
driven application dynamics. After deprecation of AARE [2], a
workflow management system written in Pharo initially released
in 2005, a gap was opened in its place. NewWave was created
with the idea to reintroduce native support for workflows in
Pharo, and to facilitate easy process handling by leveraging the
TaskIt2 library.

Outline of this paper is the following. The motivation for
creating a new workflow engine is described in Chapter 2.
Chapter 3 describes the implementation details, while Chapter 4
contains conclusions and future work.

2 Motivation

Creating a workflow engine is a challenging task. There are
many available options, on a variety of platforms, ranging from
commercial solutions, partially commercial (where some
advanced features are not available on free to use versions), as
well as freeware solution (but usually with severely limited
functionality). In Pharo language community, an idea to create an
open-source workflow engine has emerged.

The Workflow Management Coalition (WfMC) has
proposed a reference architecture, used as a blueprint for
developing a fully functional workflow engine. While there is
much work to implement all the standards and recommendations
stated in the reference architecture, our goal is not to simply create
yet another implementation of the workflow engine. The main
idea is to design a flexible, extensible development environment
which enables integration with other applications and tools, and
also to be able to act independently, providing everything that a
process-oriented application needs for its execution (dynamic
generation of user interface forms for user tasks, database
persistence of process definitions, active users, and active
processes, etc.). 	

2TaskIt - https://github.com/sbragagnolo/taskit

IWST’19, August, 2019, Cologne, Germany Sebastijan Kaplar, Miroslav Zarić, Gordana Milosavljević

Other ideas include distributing NewWave over multiple Pharo
images and enabling the orchestration and communication
between those images where every image would be given a
certain type of task to perform, and lastly to achieve dynamic
process reconfiguration without violating the workflow system.
Although AARE workflow engine is not supported anymore,
there are two more projects, built for different purposes:	

• BPM Flow [3] which is built at the backend of
GemStone/S from GemTalkSystems. BPMFlow is an
open-source implementation of BPM standard and it
includes: back office application, front office
application, business intelligence applications, and a
number of features. Unfortunately, there is no similar
solution in Pharo.

• A4BP (Assessment for Business Processes) is a
platform whose purpose is to craft custom analysis and
obtain quality metrics of imported Business Process
models already created with external tools. The main
idea is to provide a tool to navigate the entire business
process definition including the relation between
process and technological services related to that
process [4]. A4BP is based on the Pharo platform.

3 NewWave Workflow Engine

NewWave allows users to specify workflow composition. It
enables specification of processes and activities as different types
of tasks and ordering of those activities. Every workflow can be
inspected with a simple yet informative visualization which is
achieved using Roassal3. NewWave utilizes TaskIt, a library that
enables the usage of tasks in Pharo, with abstractions to execute
and synchronize concurrent tasks (Figure 1).

Figure 1. NewWave workflow engine dependencies

An activity is defined within the Business Process and

represents work to be performed to achieve desired results. The
activity usually takes some time to perform and requires one or

3 Roassal2 visualization engine - http://agilevisualization.com

more resources, some input (i.e., a form to collect data) and will
produce some output. An activation represents one instance of the
activity in the running workflow. The activity can have multiple
instances (activations) in the same workflow.

WfMC defines a Reference Model [5] which proposes
standards in order to foster interoperability between different
workflow systems. NewWave supports an array of widely
accepted business workflow patterns which will be listed. Some of
the patterns not listed can be achieved by combining supported
patterns.

Sequence or sequential routing is a basic control-flow
pattern, where activities are executed in a sequence, and the
current activity is enabled after completion of previous [5]. 	

Conditional routing or the XOR-split represents a decision in
the workflow process where the branch is forked into two or more
branches, and the control is passed to one of the outgoing
branches based on a specific condition [5]. 	

Parallel routing or the AND-split represents forking of a
branch into two or more branches where each of them is executed
concurrently [5]. 	

Synchronization or the AND-join represents meeting two or
more branches into one subsequent single branch, and the activity
from that single branch is run only when all previous branches
have been completed [5].

3.1 Types of tasks
NewWave supports different types of tasks that can be

performed. Elementary type of task is BaseTask.
BaseTask has only one instance variable, which is value, and it is
used to store and retrieve data.

ScriptTask derives from BaseTask, and it has one additional
instance property, which is a script. The script property holds the
block of code that should be executed when called. This is the
reason why the value from BaseTask is redefined, and it looks like

ScriptTask>>value

^ script value

By sending the message value to the script variable, the

block is executed and the foreseen operation is performed.
CustomTask allows for complex tasks definition. It allows

embedding custom code and different libraries to gather data from
the user. CustomTask also uses announcers to notify the engine
when the task is completed.

UserTask allows to define a simple form for gathering data
from the user. It is possible to use the API, provided by
NewWave. to add different types of fields which will be displayed
to the user during the workflow execution.	
	

3.2 Designing the workflow
NewWave, as it is still in the early development phase, has

no graphical workflow editor/designer. Nevertheless, specification
of the workflow, for now, can be accomplished directly in the
Pharo environment. NewWave has an API that allows defining the
desired workflow (see Listing 1, for example). After defining the
workflow, it is possible to use Roassal to get simple visualization

NewWave Workflow Engine IWST’19, August, 2019, Cologne, Germany WOODSTOCK’18, June, 2018, El Paso, Texas USA

and inspect the designed workflow. An example of one such
workflow is given in Figure 2.

Figure 2. Workflow visualization with Roassal in NewWave

Figure 2 depicts a workflow where some common elements

are shown. As we can see, we have a StartEvent, followed by a
BaseTask. After BaseTask is executed, ParallelSplit is executed,
and two tasks are performed concurrently. Those tasks meet at a
ParallelJoin which is used for synchronization. Finally, one more
task is executed before the workflow is completed. Creating the
described workflow is presented in Listing 1. For simplicity
purposes, the creation of some elements is omitted.

startEvent addOutgoingEdge: task1.
task1 addOutgoingEdge: split1.

split1 addOutgoingEdge: task2.
split1 addOutgoingEdge: task3.

task2 addOutgoingEdge: parallelJoin.
task3 addOutgoingEdge: parallelJoin.

parallelJoin addOutgoingEdge: task4.
task4 addOutgoingEdge: endEvent.

engine := WaveEngine new.
we := WaveExecutor initialNode: startEvent.
engine addExecutor: we.

	
Listing 1. Creating the workflow	

	
It is also possible to inspect every element of the workflow

using Roassal and Pharo builtin features. Figure 3. presents
ParallelJoin, and it shows that it has two incoming flows, and one
outgoing flow, which is also visible in Figure 2. Moreover, if it is
needed, incoming and outgoing flows can also be inspected
separately, for example, to show what elements are at the end of
each flow.

Figure 3. Inspecting ParallelJoin

Workflow execution

Workflow execution in NewWave starts by sending a
message startEngine to the WaveEngine (Figure 4). This event
message activates the WaveExecutor, which starts executing the
previously defined workflow. Workflow execution can be logged
and followed from start to finish. During the execution, the user
can interact with different types of tasks, entering data in the
forms and deciding the path of execution based on offered
choices.

WaveEngine

WaveEngine is one of the main components and represents
the engine of the workflow. Engine controls and organizes the
execution of the workflow, with all runtime information necessary
to achieve effective control of the execution, such as work list,
activations, control of the multiple executors, etc.

WaveExecutor

WaveEngine has one main WaveExecutor, which is
responsible for executing the workflow. When necessary, for
example, when ParallelSplit occurs, multiple WaveExecutors can
be spawned and they exist until the end of their execution, for
example, until ParallelJoin ends.	

WaveExecutor has the task to provide a proper environment
to execute the current element. To obtain the element for
execution, WaveExecutor is relying on services of FlowHandler.
FlowHandler, as its name suggests, handles the flow of execution.
It keeps the information about the element that is currently
executing. After one element execution is completed,
FlowHandler determines, from the Workflow definition, the next
element to be executed. It also keeps the information which
elements were executed and in what particular order. This
“execution history” is handy for retracing the steps of execution,
following up on the workflow progress. Simplified architecture of
the NewWave is shown in Figure 4.

IWST’19, August, 2019, Cologne, Germany Sebastijan Kaplar, Miroslav Zarić, Gordana Milosavljević

Figure 4. Simplified engine architecture

Tasks in NewWave, as it is a custom in most of the
workflow engines, can be broadly classified as automatic or
manual, and they can be combined through the workflow. Using
the scheduling mechanism, tasks can be scheduled to perform at
the desired time, with the option to repeat when necessary.

Activations in the NewWave

	
Activations API is a part of the NewWave engine. Every

node (task or gate) in the engine has an activation associated with
it. The activation becomes active when the engine tries to execute
the current node. In that moment node is activated and
information about it is recorded in the engine. When the execution
finishes, the activation changes state to completed and updates the
information in the engine, with all the additional data the engine
needs.	

This information can be used to query the activation for the
nodes in the engine, to check in what state it is, or to get
information about the executor instance running the node, and so
on.

Using announcers in the NewWave

Pharo Announcement framework is a small but powerful
event notification framework which provides the generic
implementation of Observer pattern. Using announcements
simplifies event system in NewWave and provides customization
options for executing different types of events. For example, we
can consider synchronization, where multiple branches converge
into one. In order to continue workflow execution past join point,
all previous parallel branches should have been completed. Every
time a branch reaches the synchronization point, a JoinEvent gets
announced, and it is used to check if the synchronization is
completed. Announcement framework allows for customization
so that the Announcement class can be subclassed (see Listing 2).

Announcement subclass: #JoinEventAnnouncer
 instanceVariableNames: 'parameter executor'
 classVariableNames: ''
 package: 'NewWave-Announcers'

	
Listing 2. Describing the JoinEventAnnouncer	

	
JoinEventAnnouncer has two instance variables, a

parameter, and an executor. The parameter represents a sequence
that leads up to synchronization point, and the executor is the
WaveExecutor instance running this execution. Since the
Announcement allows events as objects, this particular behavior is
used to notify the part of the engine which handles
synchronization with the objects that are being executed.
NewWave offers support for different kinds of events and allows
embedding new types of events; the more common ones are
shown in Figure 5.

Figure 5. Events supported in NewWave

NewWave uses TaskIt, a library written in Pharo, that
abstracts execution and synchronization of concurrent tasks.
NewWave utilizes two mechanisms, in particular, the worker
runner and futures. The worker runner is a task runner (instance of
TKTWorker) that uses a single process to execute tasks from a
queue, and with workers, NewWave can control the number of
live processes as well as how tasks are distributed amongst them.
Future is an object that represents a future value of the task’s
execution. When the task completes, the result is deployed into
the corresponding future, thus allowing access to its value.

NewWave Workflow Engine IWST’19, August, 2019, Cologne, Germany WOODSTOCK’18, June, 2018, El Paso, Texas USA

However, it can not be accessed right away, and futures provide
callbacks to access its value asynchronously.

4 Conclusion
NewWave project was started with the idea to reintroduce

native support for workflows in Pharo. This paper presents the
first steps towards the goal to create an extensible workflow
management system to facilitate easy specification and execution
of application business logic. Currently, NewWave supports: 	

• Control-flow patterns (sequential routing, parallel
routing, conditional routing, synchronization)

• Different types of tasks (user tasks, custom tasks, script
tasks)

• Scheduling
• Different events (start event, end event, boundary event,

custom engine events)
• Subprocesses
• Specification of workflows using the NewWave API
• Visualization and inspection of the specified workflows
• Pharo Announcements framework.
• Rudimentary support for user interface forms for

obtaining data for user tasks.

Future work involves: (1) development of graphical
workflow designer, (2) better support for user interface forms for
obtaining data from user tasks, (3) serialization of process
definitions, active users, and active processes in a database, (4)
importing BPMN (Business Process Model and Notation)
diagrams, (6) support for the integration with various tools
through plugin mechanism, and (7) distribution over multiple
Pharo images and enabling the orchestration and communications
between those images.	

	

ACKNOWLEDGMENTS
	
The authors would like to thank Stéphane Ducasse and Cédrick
Béler for their kind help and support throughout the project.
	

REFERENCES	
[1] Puccini, Mario Eduardo Sánchez. "Executable models for extensible workflow

engines." PhD diss., Uniandes, 2011.	
[2] “AARE - Workflow Management System”, Whitepaper, Netstyle.ch GmbH, 2005,

https://github.com/Netstyle/Workflow/blob/master/Workflow-whitepaper.pdf	
[3] BPM Flow Manual, https://bpmflow.gitbook.io	
[4] Peralta, Alvaro Jose, Nguyen Tuan Thanh Le, Serge Stinckwich, Chihab Hanachi,

Alexandre Bergel, and Tuong Vinh Ho. "A Tool for Assessing Quality of Rescue
Plans by Combining Visualizations of Different Business Process Perspectives." In
International Conference on Information Systems for Crisis Response and
Management in Mediterranean Countries, pp. 155-166. Springer, Cham, 2015.

[5] Workflow Reference Model, http://www.wfmc.org/2-uncategorised/53-reference-
model	

