
Since several versions prior to Pharo 12, Pharo internally used a new representation for
classes and a new syntax was optional. Since Pharo 12 Pharo uses by default the fluid class
syntax. This syntax focuses on not forcing the developer to use long messages for empty
information such as empty instance variables and empty class variables. It also supports first
class instance variables named Slot. And really important it fixes the combinatorial explosion
of the numbers of class creation methods in presence of traits, tag:, and new class formats
such as ephemerons and others. We did not do it for the fun but we think that we found a
really nice syntax that is based on messages, compact and supporting well optional
information. Now it does not mean instance variables are gone. Instance variables are
default slots. Let us take a tour of the fluid syntax.

We start showing what is the minimum information required. Then we show that defining
simple slots is as simple as defining instance variables. We then go systematic and illustrate
all the situations.

With the fluid syntax you only specify information that is needed. You do not need empty
lists.

Object subclass: #AbstractTutorial
 instanceVariableNames: ''
 classVariableNames: ''
 package: 'ProfStef-Core'

is expressed as

Object << #AbstractTutorial
 package: 'ProfStef-Core'

The messages << and package: are the only mandatory ones. All the others are to be
used when needed.

Since several versions of Pharo, classes have first-class instance variables. It means that
instance variables are represented as real objects but do not worry this has no runtime cost.

About fluid class syntax

The lovely empty class definition

Instance variables and slots

When you do not need special instance variables such as weak or observable ones you can
just use a symbol.

The following definition of the class Point

Object subclass: #Point
 instanceVariableNames: 'x y'
 classVariableNames: ''
 package: 'Kernel-BasicObjects'

is now expressed as:

Object << #Point
 slots: { #x . #y };
 tag: 'BasicObjects';
 package: 'Kernel'

instanceVariableNames: 'x y' is replaced by slots: { #x . #y }; .
{#x . #y} defines a list of simple instance variables (internally represented by an

instance of the class representing the instance variable and not just a symbol.

Note that the tag: message: is only needed when your class is placed in the package tag.

If you want to add more information to the class definition you have to know information that
is not shown by default by the class definition. This can be a bit painful to guess. For this
reason, the IDE helps you. Just place the caret on the class name and select the expand
menu item. This will show all the possible messages that you can send to create a new
class.

Getting help from the IDE

Now we are ready to go in the full details

The layout: message

Classes can have different internal formats: for example

ArrayedCollection << #Array
 layout: VariableLayout;
 tag: 'Base';
 package: 'Collections-Sequenceable’

is the same as

ArrayedCollection variableSubclass: #Array
 instanceVariableNames: ''
 classVariableNames: ''
 package: 'Collections-Sequenceable-Base'

If you want to know more, just look for the subclasses of AbstractLayout . By default, a
class has a FixedLayout and you do not have to specify a layout.

In Pharo a class can be composed out of trait composition using the message traits: .

WeakIdentityKeyDictionary << #ASTCache
 sharedVariables: { #CacheMissStrategy };
 tag: 'Parser';
 package: 'AST-Core'

is the same as

WeakIdentityKeyDictionary subclass: #ASTCache
 instanceVariableNames: ''
 classVariableNames: 'CacheMissStrategy'
 package: 'AST-Core-Parser'

What you see is that we do not have to specify empty lists.

A slot is an object representing an instance variable. By default the programmer should use
a symbol so you go from ‘x y’ to {#x . #y} .

This syntax lets us write more complex class definitions such as

The message traits:

Non default instance variables

SpPresenter << #SpDialogPresenter
 slots: {
 #parentWindow => WeakSlot .
 #acceptAction .
 #cancelAction .
 #image };
 package: 'Spec2-Dialogs'

Here #parentWindow => WeakSlot creates a slot of the class WeakSlot (does not
count for garbage collector).

The following class definition shows that we can have instance variables which emits
annoucements each time they are changed. This is the behavior of ObservableSlot .

SpPresenter << #SpAbstractWidgetPresenter
 slots: {
 #borderWidth => ObservableSlot .
 #borderColor => ObservableSlot .
 #dragEnabled => ObservableSlot .
 #dropEnabled => ObservableSlot .
 #color => ObservableSlot .
 #help => ObservableSlot .
 #enabled => ObservableSlot .
 #wantsDrop => ObservableSlot .
 #acceptDrop => ObservableSlot .
 #deferredActions };
 tag: 'Widgets';
 package: 'Spec2-Core'

You may not remember but classVariables in Pharo are shared between the instance
and class side hierarchies. Read Pharo by Example if you need a little refresh.

In the fluid class syntax we decided to name them better and we called them
sharedVariables . A shared variable is exactly the same as an old classVariable except

that you there is no confusion possible with classVariables and metaclass instance variables.
So a class and metaclass can have slots and in addition shared variables.

For example TextConstants defines the following shared variables.

The message sharedVariables:

SharedPool << #TextConstants
 slots: {};
 sharedVariables: { #Ctrls . #Ctrlh . #CtrlR . #CtrlG };
 tag: 'Base';
 package: 'Text-Core'

It is exactly the same as the old message:

SharedPool subclass: #TextConstants
 instanceVariableNames: ''
 classVariableNames: 'Ctrls Ctrlh CtrlR CtrlG'
 package: 'Text-Core-Base'

It is rare to face the need for shared pools (also named poolDictionaries) but when you need
to define a group of constants and use these constants in different class hierarchies then
they are handy.

Now the old class definition of the class Text shown below:

ArrayedCollection subclass: #Text
 instanceVariableNames: 'string runs'
 classVariableNames: ''
 poolDictionaries: 'TextConstants'
 package: 'Text-Core-Base'

is now

ArrayedCollection << #Text
 slots: { #string . #runs };
 sharedPools: { TextConstants };
 tag: 'Base';
 package: 'Text-Core'

This is nearly one decade that pool dictionaries did not exist anymore. They are subclasses
of SharedPool : a special class holding shared variables.

Now when you do not need them no need to be exposed to their definition.

The fluid class is just better than the old one. It is compact, precise and scales well in the
presence of optional arguments.

The message sharedPools:

Conclusion

So far you see that if you need simple things, they are simpler to write. And the plus is that
you can get more power for the same price.

