
Marcus Denker marcus.denker@inria.fr INRIA Evref

Undeclared Variables
How and why and what are the problems?

mailto:marcus.denker@inria.fr

Globals in ST80

• Globals and Class Variables are Associations

• from Smalltalk global dictionary

• from classPool dictionary of a class

• Associations of Pool Dictionaries

• SharedPool subclasses since Squeak (Associations from the classPool)

Bytecode

• pushLiteralVariable: x

• storeIntoLiteralVariable: x

• “"push the ivar 2 of the object in literal frame at x”

• No need to be an Association (VM does not check)

Undeclared: Why ?

• Problem: compiling code with Variables not yet defined

• Examples:

• Load users of a class before the class (code load)

• remove ivar/classVar, subclasses are recompiled (during development)

Undeclared

• We have a global variable “Undeclared” that points to a Dictionary

• Undeclared is an entry #name-> nil

• It is an Association in the dict (aka “binding”)

• Every using method points to this one Association instance

• Reading Undeclared: reads nil

• Writing: writes to the value

What happens if we define?

• If a global is defined

• add class var

• add global

• We take the binding (Association) from the Undeclared, change the value

• All *users* of the Variable are changedat the same time

• as they use the same object

• We call that “Undeclared repair”

Probems of Repair

• Only works for Globals

• ivars / temps use other bytecode *and* do not have just one value

• Here we recompile

• Wrong for Class Variables

• Repair does not care about lookup semantics

Undeclared Repair: Ignores Semantics

• create a class with one method that returns a Global that does not exist (in
the menu "Leave Variable Undeclared")

• create a second class with a Class Variable with the same name

• set this to some value

• now call the method in the first class that returns the unknown global

• You will see that the Undeclared repair changed the variable there to point to
the class variable. A Variable that is not know to that class...

Undeclared: Never cleaned up

• Undeclared Dictionary is cleaned when a repair is done for that one name

• But as temps/ivars are repaired by recompile, they stay forever

• We would need to scan the whole system to be sure, which is too slow

• Explicit cleanup: #cleanOutUndeclared

• Called by cleanUp and release cleaner

Undeclared clean: Iterate all methods

• Undeclared repair iterates over all installed methods

• Slow

• e.g we used to scan when removing a class. Far too slow!

• But worse: a method not installed with an Undeclared is cut of from repair

• It will have the Undeclared forever, even if the var gets defined (!!)

Undeclared: They read nil

• Problem: there is no way to hook into Undeclared read or write

• It is just “pushLiteralVariable”

• No way to ask at runtime “Do you want to define a class?”

• Pharo: we added a hack to improve TDD flow

• #doesNotUnderstand: on UndefinedObject checks reflectively if the DNU is
due to reading a undeclared global

Pharo: First Class Variables

• We do not use Associations anymore

• GlobalVariable / ClassVariable / UndeclaredVariable, subclass of Variable

• Second ivar is the value, thus #pushLiteralVariable bytecode works

• Implement #key and #value protocol, thus they can play the role of
Associations in Dictionaries

• More state. For ClassVariable: defining class

Pharo: Undeclared repair

• Undeclared repair can not just re-use the binding

• We need to change the class

• Undeclared -> Global (changeClass)

• Undeclared -> ClassVariable (become, as ClassVar has more ivars)

Summary Pharo11

• ST80, but Variables instead of Associations

• needs become:/changeClass to repair, not nice

• Hook into Undeclared read by an ugly #doesNotUnderstand: hack

• Presents user with a dialog to define the missing Variable

Pharo12: #undeclaredVariableRead

• UndeclaredVariable code generation was changed to send a message to the
Variable

• #runtimeUndeclaredRead/ #runtimeUndeclaredWrite:

emitValue: aMethodBuilder

	 aMethodBuilder

	 	 pushLiteral: self;

	 	 send: #runtimeUndeclaredRead

Pharo12: #undeclaredVariableRead

• For now: raises exception

• We can now e.g. present user interaction instead of reading nil in interactive
mode

• is just a reflective read for GlobalVariable/ClassVariable (after repair)

• We recompile on read and write to gain speed

Pharo12: Undeclared Repair Summary

• First Class Variables, as in Pharo11

• ST80 style Undeclared repair, but using become:

• Undeclared compile send #runtimeUndeclaredRead

• We can now e.g. present user interaction instead of reading nil

• We removed the #doesNotUnderstand: hack

Problems of #undeclaredVariableRead

• We still rely on the undeclared repair and #cleanOutUndeclared

• With all the problems noted

• Mapping ast->bytecode

• We create a new AST and re-compile to get the mapping

• But Undeclared was defined

• This the method used to create bc-ast mapping is out-of-sync with the method
we need the mapping for

Idea (without VM Change)

• We can understand UndeclaredVariable as “late bound Variable”

• read/write re-lookup, delegate to result if not Undeclared

• runtime read/write would need to know the context (and forward readInContext:)

• Remove become: magic. Undeclared stay Undeclared

• Repair by re-compile

• Not installed methods: compiler takes undeclareds from the prior method, uses overlay
environment to force to use them for that compile, shadowing the now defined names

Properties

• Negative: Need compiler

• But we need it already for undeclared ivars and temps

• Repair is semantically correct (see problem shadowing ClassVariable)

• Mapping is correct for non-installed methods

• Undeclared can be a weak set (we never need to clean up manually)

• No need for a global variable (could be class var in UndeclaredVariable)

• no need for #become:

• no need for #cleanOutUndeclared

• not-installed methods will never be “cut off”

