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ABSTRACT
Untrusted deserialization exploits, where a serialised object graph

is used to achieve denial-of-service or arbitrary code execution,

have become so prominent that they were introduced in the 2017

OWASP Top 10. In this paper, we present a novel and lightweight

approach for runtime prevention of deserialization attacks using

Markov chains. The intuition behind our work is that the features
and ordering of classes in malicious object graphs make them dis-

tinguishable from benign ones. Preliminary results indeed show

that our approach achieves an F1-score of 0.94 on a dataset of 264

serialised payloads, collected from an industrial Java EE application

server and a repository of deserialization exploits.
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1 INTRODUCTION
In programming languages, serialization is the process of converting

an in-memory object or data structure into a persistent format;

deserialization works the opposite way. An attacker accessing the

serialized form of an object can thus influence the object that will be

created upon deserialization. In recent years, security researchers

discovered variousways of abusing deserialization to achieve denial-

of-service or arbitrary code execution in various languages like Java,

C#, PHP, Python, and Ruby using various serialization formats like

binary, XML, JSON, and YAML [3, 8, 11, 12]. Deserialization issues

are now so prominent that they are now included in the OWASP Top

10 Web Application Security Risks list [2]. In this paper, we focus

on detecting attacks against native Java deserialization that uses

byte streams as the serialization format. To help combat the threat

posed by native Java deserialization vulnerabilities, deserialization

filters were introduced in Java 9 and back-ported to Java 6, 7, and

8 [1]. Upon deserialization of, the filter is invoked after resolving

the class from the byte stream and before creating an object of that

class in memory, giving the filter an opportunity to inspect the

class and stop the deserialization process altogether if a forbidden

class is detected. However, the onus of developing the filters is on

developers and the manual effort involved is not trivial. In this
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TimerTask

+ task: Runnable

+ readObject(ObjectInputStream): void

CommandTask : Runnable

+ command: String

+ run(): void

TimerTask L task Runnable CommandTask L command String "calc.exe"

Class name Field description Field value

Figure 1: A simple class diagram and its corresponding byte
stream

paper, we propose an approach to automatically build probabilistic

models from benign and malicious byte streams to detect malicious

deserialization at runtime.

2 BACKGROUND ON JAVA
DESERIALIZATION

In Java, any object from a class that directly or indirectly (i.e.

through inheritance) implements the Serializable interface can

be serialized and deserialized using Java native serialization. During

the serialization process, starting from the root object, references to

other objects (e.g. through class fields) are resolved and serialized

deterministically in a recursive manner until the entire object graph

has been converted to a byte stream. During deserialization, the

serialized object graph is read sequentially from the byte stream,

one object at the time. When an object is deserialized, the first infor-

mation that is extracted from the stream is its class name, at which

point deserialization filters are invoked to give the application an

opportunity to introspect the class and interrupt deserialization if

desired. Figure 1 shows an example of a class diagram (top) with a

simplified representation of its corresponding byte stream (bottom).

Assuming that instances of those classes have been constructed,

serializing the corresponding object graph would result in the byte

stream at the bottom of Figure 1. The first part of the byte stream

contains the name of the class of the first object to be deserialized,

followed by field descriptions. The last part of the stream contains

the field values, which can be objects themselves. If this stream was

deserialized, the deserialization filter would receive the TimerTask
class first, followed by the CommandTask class. Detailing the exact
mechanisms that an attacker can use to exploit Java deserialization

is beyond the scope of this paper, but the interested reader can

refer to [8, 9, 11] for more information. The key takeaway is that

object graphs are serialized, deserialized, and filtered sequentially;

a property we leverage to abstract them as Markov chains.
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3 BACKGROUND ON MARKOV CHAINS
A Markov chain represents a system that has a finite number of

states: 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛} and that transitions between states with

some probability 𝑝 at each step 𝑡 . The probability of the system

starting in a state 𝑠𝑖 ∈ 𝑆 is captured by its initial state probability

vector: 𝑝𝑖𝑛𝑖𝑡 = (𝑝1, 𝑝2, . . . , 𝑝𝑛), where each probability 𝑝𝑖 corre-

sponds to the probability of the chain starting in state 𝑠𝑖 and where

the probabilities in 𝑝𝑖𝑛𝑖𝑡 sum to one. In Markov chains, the proba-

bility of transitioning from a state 𝑠𝑖 to another state 𝑠 𝑗 depends on

𝑠𝑖 only, and is captured by a transition probability matrix, where

rows correspond to the state at step 𝑡 , columns correspond to the

state at step 𝑡 + 1, and each row sums to one:

𝑝𝑡𝑟 =
©­­«
𝑝11 𝑝12 . . . 𝑝1𝑛
.
.
.

.

.

.
. . .

.

.

.

𝑝𝑛1 𝑝𝑛2 . . . 𝑝𝑛𝑛

ª®®¬
Given a Markov chain and a sequence of states (𝑥1, 𝑥2, . . . , 𝑥𝑛), one
can calculate the probability that the chain generated the sequence

with a simple product of probabilities:

𝑃 ((𝑥1, 𝑥2, . . . , 𝑥𝑛)) = 𝑝𝑖𝑛𝑖𝑡 (𝑥1) ·
𝑛∏
𝑖=2

𝑝𝑡𝑟 (𝑥𝑖−1𝑥𝑖 ) (1)

4 MODELLING JAVA DESERIALIZATION
WITH MARKOV CHAINS

In this section, we explain how we model deserialization as a

Markov chain. Our choice of Markov chains over other learning

approaches was motivated by two main factors: 1) previous failed

experiments with a sequence-agnostic classifier, and 2) the need

to make predictions based on small datasets. We indeed experi-

mented with naïve Bayes classifiers first and only achieved mar-

ginal improvement over random classification. Then, we chose

Markov chains (MC) over more complex sequence-based learning

approaches that require large datasets like RNN, and LSTM because

in our setup, deserialization is a relatively uncommon operation,

leading to a small dataset. In section 6, we show how MC gen-

erated from Bayesian inference, which accounts for the inherent

uncertainty of small datasets, lead to significantly more precise

predictions than MC that are derived directly from empirical data.

4.1 Abstracting Java classes as states in a
Markov chain

Classes in a stream and their various features determine the code

that is executed during deserialization. For example, in Figure 1,

because the CommandTask class implements the Runnable interface,
the CommandTask constructor will be invoked to create a Runnable
object for the task field. Also, because the TimerTask class over-
rides the readObject method, it can alter default deserialization,

which is a feature that is often exploited in deserialization attacks.

To exploit a deserialization vulnerability, attackers will seek to

craft a byte stream consisting of specific classes with specific fea-

tures in a specific order that will typically lead to denial-of-service

or arbitrary code execution. The key insight here is that the class’s

intended use is largely irrelevant to attackers, who are instead solely

interested in the very specific features that will lead to successful ex-

ploitation. For this reason, we studied all the deserialization exploits

in ysoserial [7] and manually identified some of the features that

make them useful for exploitation purposes. The non-exhaustive

list of features we identified are listed in Table 1.

Given the set of features in Table 1, we can abstract each class

as a Boolean feature vector. Given 𝑛 Boolean features, the number

of possible feature vectors is finite and equal to 2𝑛 . In our setup,

the set of states in the Markov chain is thus the set of possible

feature vectors. Because the maximum number of states grows

exponentially with the number of features, in practice, we use the

set of feature vectors that are observed in the training set, which

cardinality tends to be much smaller than 2𝑛 . To account for new

feature vectors in the testing set, we create a generic state to which

all unobserved states map to.

4.2 Estimating probabilities from data
We estimate the various probabilities in our Markov chain directly

from dynamic observations. Specifically, given a set of byte streams,

we deserialize them, extract the resulting sequences of classes,

and abstract all classes to feature vectors. This results in a set

of concrete Markov chain instances (i.e. sequences of states) from

which we can estimate the initial and state transition probabilities.

The most straightforward approach is to directly use empirically

observed frequencies as probabilities. This works well in contexts

where the sample size is large. When the sample size is small,

however, statistical inference methods are generally preferable. In

this work, we use Bayesian inference to estimate the probabilities of

a Markov chain where empirical observations are used to guide the

inference process. Bayesian inference models the variables to infer

as random variables issued from specific probability distributions.

Then, through a guided random process (e.g. Markov Chain Monte

Carlo), it infers the parameters of those probability distributions

that maximise the likelihood of the empirically observed values.

Consider, for example, the transition probability matrix of a Markov

chain. Our goal is to estimate the transition probabilities that best

explain the observed sequences of states. A typical way of modelling

such a matrix is to represent each row as the outcome of a Dirichlet

distribution, which is parameterised with a vector of concentration

parameters (𝛼1, . . . , 𝛼𝐾 ) where 𝛼𝑖 > 0 and produces as output a

vector of 𝐾 real numbers that sum to one:

(𝑥1, . . . , 𝑥𝐾 ), where 𝑥𝑖 ∈ [0, 1], and
𝐾∑︁
𝑖=1

𝑥𝑖 = 1

The concentration vector is used to initialise the distribution and

captures our prior knowledge about transition probabilities. In our

setup, all the concentration parameters are set to one, to represent

that we have no prior knowledge. By repeatedly adjusting the

concentration parameters, sampling from the per-row Dirichlet

distributions, and evaluating the likelihood of the resulting matrix

against our observations, Bayesian inference eventually converges

to a set of likely transition matrices. It is important to note that

through its inference process, Bayesian inference actually generates

multiple distributions for each row, where the more recent ones are

expected to more precisely capture the real probabilities. In cases

where the observations are few, the inference might not converge

to a single solution, but rather to a set of plausible solutions. We
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Table 1: Common class features used in deserialization exploits

Id Feature Description

1 Uses reflection

True if the class calls any of the following from java.lang.reflect:
- Constructor.newInstance()
- Field.set()
- Method.invoke()

2 Overrides readObject True if the class overrides the method Object readObject(ObjectInputStream ois)

3 Overrides hashCode True if the class overrides the int hashCode() method.

4 Has generic field

True if the class has a field of any of the following type:

- java.lang.Object
- java.lang.Comparable
- java.util.Comparator

5 Implements Map True if the class implements the java.util.Map interface.

6 Implements Comparator True if the class implements the java.util.Comparator interface.

7 Calls hashCode

True if the class calls any of the following methods:

- int java.util.Objects.hash(Object... values)
- int java.util.Objects.hashCode(Object o)
- *.hashCode()

8 Calls compare

True if the class calls any of the following methods:

- *.compare()
- *.compareTo(...)

later use metrics like standard deviation over the set of generated

solutions to estimate the confidence in our predictions.

5 RUNTIME PREVENTION OF
DESERIALIZATION ATTACKS

We now present our approach to infer Markov chains from benign

and malicious deserialization examples and predict if a given byte

stream is malicious. In our setup, the benign and malicious exam-

ples come from the application under test and from the ysoserial
dataset [7, 11] respectively. To collect the classes and their associ-

ated features, we implemented a custom deserialization filter that

uses ASM [4] to dynamically extract features from deserialised

classes. To enable the classification of byte streams as benign or

malicious, we create two Markov chains during the inference phase:

one from benign examples, and one from malicious examples. Once

the inference phase is complete, we use another custom deserial-

ization filter to detect and prevent deserialization attacks based

on the inferred Markov chains. A simplified filter is illustrated in

algorithm 1. It takes as input the benign (B) and malicious (M)

Markov chains as well as two threshold parameters 𝑡 and 𝑙 . Once

deserialization starts, the Java runtime invokes the filter every time

a new class is read from the serialized stream and passes it the class

and a Boolean flag indicating whether the end of the stream has

been reached. In practice, we must derive the 𝑒𝑛𝑑 flag from other

filter inputs, but we omit these details for clarity. The filter then

uses ASM [4] to abstract the class as a feature vector and appends

it to the current sequence of classes (lines 3-4). It then computes

the mean probability that the sequence has been generated by the

benign or malicious Markov chains (lines 5-6). Then, it computes

confidence intervals of 𝑡 standard deviations around the means and

checks if the intervals are disjoint (line 7). If the end of the stream

has been reached and the intervals are disjoint, the highest mean

probability determines the outcome (line 9). If the end has been

reached but the intervals are not disjoint, we do not have enough

confidence in the results to reach a decision and conservatively

reject the stream (line 11). If the intervals are disjoint, and at least 𝑙

classes have been read from the stream, deserialization is aborted

early if the stream is malicious (line 13). Otherwise, the filter post-

pones the decision and lets deserialization proceed to the next class

in the stream by returning undecided.

6 PRELIMINARY RESULTS
To validate our approach, we conducted an experiment on the Ora-

cleWebLogic Server
1 2

(WLS). In our setup, we collected 227 benign

deserialization chains (avg. length of 38.96) from trusted runs of

WLS. We also collected 37 malicious chains (avg. length of 16.68)

from the deserialization payloads available in [7]. To measure the

precision, recall and F1-score of our approach, we conduct a 5-fold

cross-validation experiment where 80% of the examples are used

for inference and the remaining 20% are used for prediction. Fur-

thermore, to assess the benefits of using statistical inference to

estimate probabilities, we also conduct the same experiment us-

ing Markov chains inferred directly from empirical data. We use

PyMC3 for Bayesian inference [16] and Pomegranate for empirical

1
https://www.oracle.com/au/middleware/technologies/fusionmiddleware-

downloads.html

2
Oracle®WebLogic Server is a registered trademark of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners.

https://www.oracle.com/au/middleware/technologies/fusionmiddleware-downloads.html
https://www.oracle.com/au/middleware/technologies/fusionmiddleware-downloads.html
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Algorithm 1: Deserialization Attack Prevention

Input: B,M, 𝑡 , 𝑙

Output: status ∈ {accepted, rejected, undecided}
1 𝑠𝑒𝑞 ← new List()

2 Function MarkovFilter(class, end):
3 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ← ExtractFeatures(𝑐𝑙𝑎𝑠𝑠)

4 𝑠𝑒𝑞.append(𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠)

5 𝑃B ←𝑚𝑒𝑎𝑛(𝑃 (𝑠𝑒𝑞 | B))
6 𝑃M ←𝑚𝑒𝑎𝑛(𝑃 (𝑠𝑒𝑞 | M))
7 𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡 ← ((𝑃B ± 𝑡𝜎) ∩ (𝑃M ± 𝑡𝜎) = ∅)
8 if 𝑒𝑛𝑑 and 𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡 then
9 return 𝑃M > 𝑃B ? rejected : accepted

10 else if 𝑒𝑛𝑑 and ¬𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡 then
11 return rejected

12 else if 𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡 and |𝑠𝑒𝑞 | ≥ 𝑙 and 𝑃M > 𝑃B then
13 return rejected

14 else
15 return undecided

16 end
17 end

Table 2: Precision, recall, F1-score, and inference time of
Bayesian and empirical Markov chains

𝑡 Precision Recall F1-score

Time

(sec)

Bayesian

0 91.67±6.97 96.67±6.67 0.94±0.03

7163

1 91.67±6.97 96.67±6.67 0.94±0.03
2 89.72±8.94 100.0±0.00 0.94±0.05
3 88.17±11.26 100.0±0.00 0.93±0.07

Empirical — 72.95±14.27 100.0±0.00 0.84±0.09 0.7

inference [17]. Table 2 shows the results of our experiment with

𝑡 ∈ [0, 3] and 𝑙 = ∞, drawing 5 000 samples from a Metropolis-

Hastings sampler and using the last 500 samples for prediction.

Bayesian inference performs significantly better, at the expense

of inference times that are orders of magnitude larger. Note, how-

ever, that inference can be performed offline and that the actual

runtime overhead, in the order of milliseconds, is similar for both

approaches (i.e. extracting class features and resolving Equation 1).

In algorithm 1, we let the filter stop the deserialization of malicious

streams early if at least 𝑙 classes have been read and the end of

the stream has not been reached. Figure 2 shows the precision and

recall achieved with different values of 𝑙 , and 𝑡 = 2. Reading more

classes is beneficial to precision while recall remains largely unaf-

fected. To our knowledge, this is the first study to use class features

and ordering for defensive purposes against deserialization attacks.

Considering our previous failed experiment with order-agnostic

classifiers and our current F1-score of 0.94 using MC, our results

suggest that class features and ordering do capture the esssence of
malicious chains.
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Figure 2: Average precision and recall in function of 𝑙

7 RELATEDWORK
In the security community, the classes used in a deserialization

payload are referred to as "gadgets" and the resulting byte stream is

known as a "gadget chain". Many existing work tackled the problem

of detecting gadgets chains in application and libraries [6, 10, 14,

15, 18] using techniques like debugger-assisted manual analysis,

static analysis, and hybrid (i.e. static and dynamic) analysis.

More closely related to our work are approaches aimed at de-

tecting and preventing deserialization attacks [5, 13]. Cristalli et

al. [5], present a two-phase approach that learns trusted execution

paths and sandboxes the native Java deserialization mechanism to

allow deserialization from those paths only. This approach does

not generalise to previously unseen paths and the precision thus

depends on the exhaustiveness of the training phase. To implement

their system, the authors modified a Java Virtual Machine (JVM),

and report overheads in the order of 20%-40%. Pan et al. [13], use

heavyweight instrumentation (e.g. 100x slowdown) to dynamically

collect execution traces and train deep learning models to detect

malicious deserialization at runtime. To achieve an F1-score > 0.90,

authors had tomanually generate over 8 000 execution traces, which

is highly unpractical. In contrast, our approach uses a native JVM

and Java deserialization filters, and incurs a very small overhead.

8 FUTURE PLANS
The work presented in this paper is in the very early stages and

warrants several caveats. Our evaluation is currently limited to

one application (WLS), one technology (Java deserialization) and

one sampler (Metropolis-Hastings) only. Other applications, sam-

plers, and languages will have to be investigated. Despite these

limitations, however, we have uncovered several avenues for fur-

ther investigation. First, our results suggest that class features and

ordering capture the essence of a malicious gadget chain. While

attackers can obviously manipulate the stream to evade detection,

successful exploitation requires specific features and ordering. We

believe that this invariant could be key in achieving robustness in

the face of adversarial attacks. Second, while our approach seems

promising on small datasets, it remains unclear how well it scales

up and down and how well it applies in various user scenarios. An

empirical evaluation using different workloads, applications and

user scenarios is needed to assess the practicality of our approach.
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