# [Pharo-project] can someone explain me this method?

Sven Van Caekenberghe sven at beta9.be
Fri Jul 13 12:09:21 EDT 2012

```Yeah, but sometimes a clever algorithm comes from a book, so to speak.

Giving the variables long names, or the constants names, would not make that much difference, it would still be pretty hard to understand.

ZTimestamp class>>withJdn: jdn dayMonthYearDo: block
"Return the value of executing block with the Gregorian Calender day, month and year as arguments,
as computed from my Julian Day Number, jdn.
See http://en.wikipedia.org/wiki/Julian_date#Gregorian_calendar_from_Julian_day_number"

| j g dg c dc b db a da y m d |
j := jdn + 32044.
g := j // 146097.
dg := j \\ 146097.
c := ((dg // 36524) + 1) * 3 // 4.
dc := dg - (c * 36524).
b := dc // 1461.
db := dc \\ 1461.
a := ((db // 365) + 1) * 3 // 4.
da := db - (a * 365).
y := (g * 400) + (c * 100) + (b * 4) + a.
m := ((((da * 5) + 308)) // 153) - 2.
d := da - ((m + 4) * 153 // 5) + 122.
^ block
value: d + 1
value: ((m + 2) \\ 12) + 1
value: (y - 4800 + ((m * 2) // 12))

On 13 Jul 2012, at 17:53, Camillo Bruni wrote:

> comments? decent variable names? no magic numbers?
> NOW you can find NONE of that in dayMonthYearDo!
>
>
> ==================================================================
> dayMonthYearDo: aBlock
> 	"Evaluation the block with three arguments: day month, year."
>
> 	| l n i j dd mm yyyy |
> 	l := jdn + 68569.
> 	n := 4 * l // 146097.
> 	l := l - (146097 * n + 3 // 4).
> 	i := 4000 * (l + 1) // 1461001.
> 	l := l - (1461 * i // 4) + 31.
> 	j := 80 * l // 2447.
> 	dd := l - (2447 * j // 80).
> 	l := j // 11.
> 	mm := j + 2 - (12 * l).
> 	yyyy := 100 * (n - 49) + i + l.
>
> 	^ aBlock
> 		value: dd
> 		value: mm
> 		value: yyyy.
>
> ==================================================================
>
> so can anyone explain me the magic numbers here??
>

```